Проблеми енергоефективності в будівлях: аналіз світового досвіду
DOI:
https://doi.org/10.32347/2409-2606.2023.44.30-38Ключові слова:
енергоефективність, огороджувальні конструкції, опалення, вентиляція, кондиціонування повітря, енергопотребаАнотація
На даний час обсяг світового енергоспоживання безперервно і стрімко зростає внаслідок процесу індустріалізації, зростання чисельності населення, підвищення енергетичних витрат на видобуток природних ресурсів тощо. Як наслідок, наявні запаси нафти та газу в усьому світі швидко виснажуються. Прогнозовані запаси нафти і газу у світі невеликі, і зростання їх прямого спалювання в майбутньому буде обмеженим через забруднення довкілля викидами газів і золи при їхньому спалюванні. Тому важливість вирішення проблеми енергоефективності має першочергове значення для сучасної цивілізації. У роботі проведено аналіз світового досвіду енергоефективного будівництва. Висвітлено основні напрямки енергоефективного розвитку. Показано, що класична методика розрахунку тепловтрат неправильно враховує дію вітру. Потрібна більш правильна методика виконання цього розрахунку. При цьому варто застосовувати лінгвістичні змінні та нечітку логіку, яка адекватно описує стани, які описуються вербальними висловлюваннями, а не числовими значеннями. На завершення виділено найбільш актуальні для нашої Республіки завдання: оптимальне розміщення забудови на генеральному плані міста, зокрема, дотримання відстані між будівлями за будівельними й містобудівними нормами; правильна теплоізоляція огороджувальних конструкцій за орієнтацією фасадів і залежно від кліматичних параметрів зовнішнього повітря; герметичність будівлі, що запобігає ін- та ексфільтрації; максимально можлива автоматизація інженерних систем до інтеграції від рівня розумного будинку до рівня розумного міста; модернізація та оптимізація роботи інженерних систем; максимальне використання відновлюваних і вторинних (наприклад, витяжного повітря) джерел енергії; відмова від класичного розрахункового методу оцінювання тепловтрат, що враховує вплив швидкості вітру, та розроблення нового методу.
Посилання
Hastings R. Solar Low Energy Houses of IEA Task 13. Routledge, 2017.
Zago M, et al. ‘Efficiency Analysis of Independent and Centralized Heating Systems for Residential Buildings in Northern Italy’. Energies, vol. 4, no. 11, 2011, pp. 2115–2131, https://doi.org10.3390/en4112115.
Piana E, et al. ‘A Standard-Based Method to Simulate the Behavior of Thermal Solar Systems with a Stratified Storage Tank’. Energies, vol. 13, no. 1, 2020, p. 266, https://doi.org10.3390/en13010266.
Hamburg A, et al. ‘Heat Loss Due to Domestic Hot Water Pipes’. Energies, vol. 14, no. 20, 2021, p. 6446, https://doi.org10.3390/en14206446.
Patrčević F, et al. ‘A Novel Dynamic Approach to Cost-Optimal Energy Performance Calculations of a Solar Hot Water System in an NZEB Multi-Apartment Building’. Energies, vol. 15, no. 2, 2022, p. 509, https://doi.org10.3390/en15020509.
Magri M, et al. ‘Implementation of an AI Ready BACS System in Treviso School with DCV (Demand Control Ventilation)’. E3S Web of Conferences, vol. 343, 2022, p. 02003, https://doi.org10.1051/e3sconf/202234302003.
Ożadowicz A. ‘A Hybrid Approach in Design of Building Energy Management System with Smart Readiness Indicator and Building as a Service Concept’. Energies, vol. 15, no. 4, 2022, p. 1432, https://doi.org10.3390/en15041432.
Felius L. et al. ‘Upgrading the Smartness of Retrofitting Packages towards Energy-Efficient Residential Buildings in Cold Climate Countries: Two Case Studies’. Buildings, vol. 10, no. 11, 2020, p. 200, https://doi.org10.3390/buildings10110200.
Mancini F. et al. ‘Energy Use in Residential Buildings: Impact of Building Automation Control Systems on Energy Performance and Flexibility’. Energies, vol. 12, no. 15, 2019, p. 2896, https://doi.org10.3390/en12152896.
Ożadowicz A. ‘A new concept of active demand side management for energy efficient prosumer microgrids with Smart Building Technologies’. Energies, vol. 10, no. 11, 2017, p. 200, https://doi.org10.3390/en1011177.
Lu, Yi et al. ‘A Systematic Literature Review of Non-Compliance with Low-Carbon Building Regulations’. Energies, vol. 15, no. 24, 2022, p. 9266, https://doi.org10.3390/en15249266.
Lizana J. et al. ‘Overcoming the Incumbency and Barriers to Sustainable Cooling’. Buildings & Cities, vol. 3, no. 1, 2022, pp. 1075–1097, https://doi.org10.5334/bc.255.
Sadowski K. ‘Comparison of the Carbon Payback Period (CPP) of Different Variants of Insulation Materials and Existing External Walls in Selected European Countries’. Energies, vol. 16, no. 1, 2022, p. 113, https://doi.org10.3390/en16010113.
Buonomano A., et al. ‘Advanced Energy Technologies, Methods, and Policies to Support the Sustainable Development of Energy, Water and Environment Systems’. Energy Reports, vol. 8, 2022, pp. 4844–4853, https://doi.org10.1016/j.egyr.2022.03.171.
Storcz T. et al. ‘Energy Design Synthesis: Algorithmic Generation of Building Shape Configurations’. Energies, vol. 16, no. 5, 2023, p. 2254, https://doi.org10.3390/en16052254.
Ji Yunzhu et al. ‘Intelligent Parametric Optimization of Building Atrium Design: A Case Study for a Sustainable and Comfortable Environment’. Sustainability, vol. 15, no. 5, 2023, p. 4362, https://doi.org10.3390/su15054362.
Hajtmanek R., et al. ‘Determination of Solar-Surface-Area-to-Volume Ratio: Early Design Stage Solar Performance Assessment of Buildings’. Buildings, vol. 13, no. 2, 2023, p. 296, https://doi.org10.3390/buildings13020296.
Notodipuro P. G. A. S. K. W., Ariani M. ‘The Effect of Building Shape and Orientation on Energy Use at Sloped Sites in Tropical Climates Using Sefaira’. ARTEKS Jurnal Teknik Arsitektur, vol. 7, no. 1, 2022, pp. 131–142, https://doi.org10.30822/arteks.v7i1.1397.
Kistelegdi I. et al. ‘Building Geometry as a Variable in Energy, Comfort, and Environmental Design Optimization—A Review from the Perspective of Architects’. Buildings, vol. 12, no. 1, 2022, p. 69, https://doi.org10.3390/buildings12010069.
Li Zhaoji et al. ‘Impacts of Building Microenvironment on Energy Consumption in Office Buildings: Empirical Evidence from the Government Office Buildings in Guangdong Province, China’. Buildings, vol. 13, no. 2, 2023, p. 481, https://doi.org10.3390/buildings13020481.
Jiménez Mejía, Katia, et al. ‘Evaluation of the Impact of the Envelope System on Thermal Energy Demand in Hospital Buildings’. Buildings, vol. 10, no. 12, 2020, p. 250, https://doi.org10.3390/buildings10120250.
Pérez-Carramiñana C., et al. ‘Optimization of Architectural Thermal Envelope Parameters in Modern Single-Family House Typologies in Southeastern Spain to Improve Energy Efficiency in a Dry Mediterranean Climate’. Sustainability, vol. 14, no. 7, 2022, p. 3910, https://doi.org10.3390/su14073910.
Al-Abduljabbar A., et al. ‘Insulation Performance of Building Components and Effect on the Cooling Load of Homes in Saudi Arabia’. Sustainability, vol. 15, no. 7, 2023, p. 5685, https://doi.org10.3390/su15075685.
Alsuhaibani A. M., et al. ‘Green Buildings Model: Impact of Rigid Polyurethane Foam on Indoor Environment and Sustainable Development in Energy Sector’. Heliyon, vol. 9, no. 3, 2023, p. e14451, https://doi.org10.1016/j.heliyon.2023.e14451.
Kumar D., Morshed A., Abhijeet J. D. ‘Investigating the Influence of Thermal Conductivity and Thermal Storage of Lightweight Concrete Panels on the Energy and Thermal Comfort in Residential Buildings’. Buildings, vol. 13, no. 3, 2023, p. 720, https://doi.org10.3390/buildings13030720.
Zach J. et al. ‘The Use of Advanced Environmentally Friendly Systems in the Insulation and Reconstruction of Buildings’. Buildings, vol. 13, no. 2, 2023, p. 404, https://doi.org10.3390/buildings13020404.
Zhangabay, N. et al. ‘Analysis of the Influence of Thermal Insulation Material on the Thermal Resistance of New Facade Structures with Horizontal Air Channels’. Case Studies in Construction Materials, vol. 18, no. e02026, 2023, p. e02026, https://doi.org10.1016/j.cscm.2023.e02026.
Araúz, J. et al. ‘Assessment of Different Envelope Configurations via Optimization Analysis and Thermal Performance Indicators: A Case Study in a Tropical Climate’. Sustainability, vol. 14, no. 4, 2022, p. 2013, https://doi.org10.3390/su14042013.
Kragt, S. et al. ‘The Potential of Static and Thermochromic Window Films for Energy Efficient Building Renovations’. Journal of Facade Design and Engineering, vol. 10, no. 2, 2022, pp. 87–104, https://doi.org10.47982/jfde.2022.powerskin.6.
Mehdizadeh-Rad, H. et al. ‘An Energy Performance Evaluation of Commercially Available Window Glazing in Darwin’s Tropical Climate’. Sustainability, vol. 14, no. 4, 2022, p. 2394, https://doi.org/10.3390/su14042394.
Milovanović B. et al. ‘Energy Renovation of the Multi-Residential Historic Building after the Zagreb Earthquake – Case Study’. Case Studies in Thermal Engineering, vol. 38, no. 102300, 2022, p. 102300, https://doi.org10.1016/j.csite.2022.102300.
Mahmoud S. et al. ‘The glass facades of the future architecture and the ways of its tightness’. Journal of Architecture, Art & Humanistic Science, vol. 6, no. 25, 2019, pp. 18–31, https://doi.org10.21608/mjaf.2019.13647.1202.
Tombarević E., et al. ‘The Impact of Windows Replacement on Airtightness and Energy Consumption of a Single Apartment in a Multi-Family Residential Building in Montenegro: A Case Study’. Energies, vol. 16, no. 5, 2023, p. 2208, https://doi.org10.3390/en16052208.
Kumar D., Morshed A., Jay S., et al. ‘Comparative Analysis of Form-Stable Phase Change Material Integrated Concrete Panels for Building Envelopes’. Case Studies in Construction Materials, vol. 18, no. e01737, 2023, p. e01737, https://doi.org10.1016/j.cscm.2022.e01737.
Zhu Hongzhi et al. ‘Preparation, Encapsulation, and Performance Evaluation of Ternary Phase Change Materials for Building Envelope’. Advances in Civil Engineering, vol. 2022, 2022, p. 8246365, https://doi.org10.1155/2022/8246365.
Muñoz-Viveros C., et al. ‘Influence of the Type of Solar Protection on Thermal and Light Performance in Classrooms’. Energy Reports, vol. 8, 2022, pp. 5329–5340, https://doi.org10.1016/j.egyr.2022.04.007.
Qahtan A. M., Almawgani A. H. ‘Experimental Evaluation of Thermal and Lighting Performance Using Double Dynamic Insulated Glazing’. Buildings, vol. 12, no. 8, 2022, p. 1249, https://doi.org10.3390/buildings12081249.
Bizoňová S. et al. ‘Methods of Preliminary Estimation of Total Solar Energy Transmittance (TSET) on a Sun Protected Window with Climatic Chamber and Hot Box Apparatus’. Civil and Environmental Engineering, vol. 18, no. 1, 2022, pp. 269–279, https://doi.org10.2478/cee-2022-0025.
‘The Intelligent Ventilated Window by HORN GROUP’. Archello, https://archello.com/brand/the-intelligent-ventilated-window-by-horn-group. Accessed 22 Apr. 2023.
Sanjivy K., et al. ‘Energy Performance Assessment of Sea Water Air Conditioning (SWAC) as a Solution toward Net Zero Carbon Emissions: A Case Study in French Polynesia’. Energy Reports, vol. 9, 2023, pp. 437–446, https://doi.org10.1016/j.egyr.2022.11.201.
Shen Chao et al. ‘Operation Strategy and Energy-Saving of the Solar Lighting/Heating System through Spectral Splitting’. Energy and Built Environment, vol. 4, no. 3, 2023, pp. 270–280, https://doi.org10.1016/j.enbenv.2022.01.002.
Al Imam M. F. I. et al. ‘Effect of Novel Phase Change Material (PCM) Encapsulated Design on Thermal Performance of Solar Collector’. Results in Materials, vol. 18, no. 100388, 2023, p. 100388, https://doi.org10.1016/j.rinma.2023.100388.
Dhaundiyal A. et al. ‘Thermal Analysis of the Hybrid HVAC Unit Using Interpolant Function’. Energy Reports, vol. 9, 2023, pp. 3943–3955, https://doi.org10.1016/j.egyr.2023.02.091.
Alharthi M. A., et al. ‘Investigation of New Combined Cooling, Heating and Power System Based on Solar Thermal Power and Single-Double-Effect Refrigeration Cycle’. Energy Reports, vol. 9, 2023, pp. 289–309, https://doi.org10.1016/j.egyr.2023.04.002.
Buday T., Buday-Bódi E. ‘Reduction in CO2 Emissions with Bivalent Heat Pump Systems’. Energies, vol. 16, no. 7, 2023, p. 3209, https://doi.org10.3390/en16073209.
De Gracia A., et al. ‘Solar Absorption in a Ventilated Facade with PCM. Experimental Results’. Energy Procedia, vol. 30, 2012, pp. 986–994, https://doi.org10.1016/j.egypro.2012.11.111.
Squier M., Davidson C. I. ‘Heat Flux and Seasonal Thermal Performance of an Extensive Green Roof’. Building and Environment, vol. 107, 2016, pp. 235–244, https://doi.org10.1016/j.buildenv.2016.07.025.
Tam V. W. Y., et al. ‘Thermal Insulation and Cost Effectiveness of Green-Roof Systems: An Empirical Study in Hong Kong’. Building and Environment, vol. 110, 2016, pp. 46–54, https://doi.org10.1016/j.buildenv.2016.09.032.
Chen P.-Y. et al. “Toward the Practicability of a Heat Transfer Model for Green Roofs.” Ecological Engineering, vol. 74, 2015, pp. 266–73. https://doi.org/10.1016/j.ecoleng.2014.09.114.
Moody S. S., David J. S. “Development and Application of a Building Energy Performance Metric for Green Roof Systems.” Energy and Buildings, vol. 60, 2013, pp. 262–269. https://doi.org/10.1016/j.enbuild.2013.02.002.
Berardi U. “Field Studies оf the "Cooling Effect" оf Vertical Greening оf Buildings” Ventyliatsiia, osvitlennia ta teplohazopostachannia, vol. 25, 2018, pp. 44–49. https://doi.org/10.1016/j.enbuild.2016.03.021.
Tkachenko T. “Field Studies оf the "Cooling Effect" оf Vertical Greening оf Buildings.’” Ventyliatsiia, osvitlennia ta teplohazopostachannia, vol. 25, 2018, pp. 44–49. http://vothp.knuba.edu.ua/article/view/168187.
Tkachenko T., Mileikovskyi V. “Assessment of Light Transmission for Comfort and Energy Efficient Insolation by ‘Green Structures.’” Advances in Intelligent Systems and Computing, 2020, pp. 139–151. https://doi.org/10.1007/978-3-030-63403-2_13.
Tkachenko T., Mileikovskyi V. “Methodology of thermal resistance and cooling effect testing of green roofs” Songklanakarin Journal of Science and Technology, vol. 42, 2021, pp. 50–56. https://doi.org/10.14456/sjst-psu.2020.8.
Tkachenko T., Mileikovskyi V. “Geometric Basis of the Use of “Green Constructions” for Sun Protection of Glazing” Advances in Intelligent Systems and Computing, vol. 809, 2019, pp. 1096–1107. https://doi.org/10.1007/978-3-030-63403-2_13
Tkachenko T., Mileikovskyi V. “Research of cooling effect of vegetation layer of green structures in construction” International Scientific and Practical Conference “World science”, vol. 7, 2017, pp. 22–24. https://www.academia.edu/38011397/RESEARCH_OF_COOLING_EFFECT_OF_VEGETATION_LAYER_OF_GREEN_STRUCTURES_IN_CONSTRUCTION
Tkachenko T., Mileikovskyi V. “Study of Heat Transfer in Energy Efficient Green Roofing”. Ventyliatsiia, osvitlennia ta teplohazopostachannia, vol. 21, 2017, pp. 37–48. http://vothp.knuba.edu.ua/article/view/168397
Ploskyi V. et al. “Simulation of the thermal resistance of the grass layer of a green roof”. Bulletin of Lviv Polytechnic National University, Series Theory and Building Practice, vol. 844, 2016, pp. 158–163. https://science.lpnu.ua/sctp/all-volumes-and-issues/volume-844-2016/modelyuvannya-termichnogo-oporu-travyanogo-sharu
Tkachenko T. et al. “Energy efficiency of green technologies in modern urbocenoses” Energy Efficiency in Construction and Architecture, vol. 8, 2016, pp. 387–392. http://nbuv.gov.ua/UJRN/enef_2016_8_64
Tkachenko T., et al. “Assessment of Energy Savings and Indirect Reduction of CO2 Emissions by Vertical Gardening.” Ventyliatsiia, osvitlennia ta teplohazopostachannia, vol. 31, 2019, pp. 16–23. https://doi.org/10.32347/2409-2606.2019.31.16-23.
Tkachenko T. “Energy Efficiency of ‘Green Structures’ in Cooling Period.” International Journal of Engineering & Technology, vol. 7, no. 3.2, 2018, p. 453. https://doi.org/10.14419/ijet.v7i3.2.14570.
Liu Li et al. “Research on Predictive Control of Energy Saving for Central Heating Based on Echo State Network.” Energy Reports, vol. 9, 2023, pp. 171–181. https://doi.org/10.1016/j.egyr.2023.02.065.
Wu Jie et al. “Research on the Cross-contamination in the Confined Conference Room With the Radiant Floor Heating System Integrated With the Down-supply Ventilation.” Heliyon, vol. 9, no. 3, 2023, p. e14389. https://doi.org/10.1016/j.heliyon.2023.e14389.
Kim S. E. et al. “Mock-up Test on the Application of Phase Change Materials in Underfloor Radiant Heating System in Apartments.” Journal of Asian Architecture and Building Engineering, 2023, pp. 1–8. https://doi.org/10.1080/13467581.2023.2185483.
Zhelykh V. et al. “Study of the Thermal Mode of a Barn for Piglets and a Sow, Created by Combined Heating System.” Eastern-European Journal of Enterprise Technologies, vol. 5, no. 8 (89), 2017, pp. 45–50. https://doi.org/10.15587/1729-4061.2017.112117.
Hasan A. et al. “A Combined Low Temperature Water Heating System Consisting of Radiators and Floor Heating.” Energy and Buildings, vol. 41, no. 5, 2009, pp. 470–79. https://doi.org/10.1016/j.enbuild.2008.11.016.
Buker, Mahmut Sami, and Saffa B. Riffat. “Solar Assisted Heat Pump Systems for Low Temperature Water Heating Applications: A Systematic Review.” Renewable and Sustainable Energy Reviews, vol. 55, 2016, pp. 399–413. https://doi.org/10.1016/j.rser.2015.10.157.
Pyrkov V. “Gidravlicheskoie Regulirovaniie Sistem Otopleniia i Okhlazhdeniia. Teoriia i Praktika”. 2nd ed., Taki Spravy, 2010. https://devi.rv.ua/data/files/books/e5866548e814aea802aedc9fbbbad533.pdf
Kоrbut V., et al. “Examining a Device for Air Distribution by the Interaction of Counter Non-coaxial Jets Under Alternating Mode.” Eastern-European Journal of Enterprise Technologies, vol. 2, no. 8 (86), 2017, pp. 30–38. https://doi.org/10.15587/1729-4061.2017.96774.
Vozniak O. T. et al. “Research of Device for Air Distribution With Swirl and Spread Air Jets at Variable Mode.” Eastern-European Journal of Enterprise Technologies, vol. 6, no. 7(78), 2015, p. 15. https://doi.org/10.15587/1729-4061.2015.56235.
Korbut V., Mileikovskyi V. “Air Distribution in Convex Wall Jets for Ventilation With a Constant Air Flow.” Ventyliatsiia, osvitlennia ta teplohazopostachannia, vol. 36, 2021, pp. 37–50. https://doi.org/10.32347/2409-2606.2021.36.37-50.
Korbut V., et al. “The Use of the Interaction of Convex Wall Jets for Ventilation With Variable Air Flow.” Ventyliatsiia, osvitlennia ta teplohazopostachannia, vol. 37, 2021, pp. 7–12. https://doi.org/10.32347/2409-2606.2021.37.7-12.
Zadoiannyi O., Evdokimenko Y. “Experimental Studies of Air Dehumidification Using Synthetic Semipermeable Membranes in Air Conditioning Systems.” Ventyliatsiia, osvitlennia ta teplohazopostachannia, vol. 24, 2018, pp. 24–31. http://vothp.knuba.edu.ua/article/view/168258
Zadoiannyi O., Evdokimenko Y. “Exergy Flow Diagram оf Moist Air For Air Conditioning Systems.” Ventyliatsiia, osvitlennia ta teplohazopostachannia, vol. 18, 2015, pp. 3–15. https://repositary.knuba.edu.ua/items/7049ec04-b6b5-40f3-a671-5a60bbbb2153
Johansson D. et al. “Modelling an Air Handling Unit, Building and Occupant Variation Regarding Energy, Moisture and Frost Protection Based on Measurements of an Air Handling Unit and Occupants’ Moisture Supply.” SN Applied Sciences, vol. 5, no. 3, 2023, p. 74. https://doi.org/10.1007/s42452-023-05291-1.
Hong G., and Byungseon K. “Development of a Data-Driven Predictive Model of Supply Air Temperature in an Air-Handling Unit for Conserving Energy.” Energies, vol. 11, no. 2, 2018, p. 407. https://doi.org/10.3390/en11020407.
Elsheniti M. B. et al. “Thermo-Economic Study on the Use of Desiccant-Packed Aluminum-Foam Heat Exchangers in a New Air-Handling Unit for High Moisture-Removal.” Case Studies in Thermal Engineering, vol. 33, 2022, p. 101967. https://doi.org/10.1016/j.csite.2022.101967.
Ainuddin A. N. M. et al. “Smart Automatic Cooling System With Reduced Humidity Effect for Pet House During Covid 19 Crisis.” ASM Science Journal, vol. 17, 2022, 864. https://doi.org/10.32802/asmscj.2022.864.
Dabbagh M., Moncef K. “Optimal Control Strategies for Switchable Transparent Insulation Systems Applied to Smart Windows for US Residential Buildings.” Energies, vol. 14, no. 10, 2021, p. 2917. https://doi.org/10.3390/en14102917.
Fink J, van Leeuwen R. “Earliest Deadline Control of a Group of Heat Pumps With a Single Energy Source.” Energies, vol. 9, no. 7, 2016, p. 552. https://doi.org/10.3390/en9070552.
Chen Yongbao, et al. “Machine Learning Approach to Predict Building Thermal Load Considering Feature Variable Dimensions: An Office Building Case Study.” Buildings, vol. 13, no. 2, 2023, p. 312. https://doi.org/10.3390/buildings13020312.
Magni M. et al. “Detailed Cross Comparison of Building Energy Simulation Tools Results Using a Reference Office Building as a Case Study.” Energy and Buildings, vol. 250, 2021, p. 111260. https://doi.org/10.1016/j.enbuild.2021.111260.
Vallati A. et al. “Retrofit Proposals for Energy Efficiency and Thermal Comfort in Historic Public Buildings: The Case of the Engineering Faculty’s Seat of Sapienza University.” Energies, vol. 16, no. 1, 2022, p. 151. https://doi.org/10.3390/en16010151.
Barone G. et al. “Assessing Energy Demands of Building Stock in Railway Infrastructures: A Novel Approach Based on Bottom-up Modelling and Dynamic Simulation.” Energy Reports, vol. 8, 2022, pp. 7508–7522. https://doi.org/10.1016/j.egyr.2022.05.253.
Heracleous, C. et al. “A Methodology to Assess Energy-demand Savings and Cost-effectiveness of Adaptation Measures in Educational Buildings in the Warm Mediterranean Region.” Energy Reports, vol. 8, 2022, pp. 5472–5486. https://doi.org/10.1016/j.egyr.2022.03.140.
Liu, Zu’an, et al. “Research on Energy-saving Factors Adaptability of Exterior Envelopes of University Teaching-office Buildings Under Different Climates (China) Based on Orthogonal Design and EnergyPlus.” Heliyon, vol. 8, no. 8, 2022, p. e10056. https://doi.org/10.1016/j.heliyon.2022.e10056.
Ibn-Elhaj S. et al. “Effect of Clay’s Multilayer Composites Material on the Energy Efficiency of Buildings.” Journal of Composites Science, vol. 6, no. 5, 2022, p. 151. https://doi.org/10.3390/jcs6050151.
Shchekin, R., et al. Spravochnik Po Teplosnabzheniiu I Ventiliatsii. 4th ed., vol. 1. Heating and Heat Supply, Ukraine, Budivelnyk. https://teplota.org.ua/2009-01-03-schekin-korenevskii-spravochnik-po-teplosnabzheniyu-i-ventilyacii.html
Zadeh L. A. “The Concept of a Linguistic Variable and Its Application to Approximate reasoning—I.” Information Sciences, vol. 8, no. 3, 1975, pp. 199–249. https://doi.org/10.1016/0020-0255(75)90036-5.
Zadeh L. A. “The Concept of a Linguistic Variable and Its Application to Approximate reasoning—II.” Information Sciences, vol. 8, no. 4, 1975, pp. 301–57. https://doi.org/10.1016/0020-0255(75)90046-8.
Zadeh L. A. “The Concept of a Linguistic Variable and Its Application to Approximate reasoning-III.” Information Sciences, vol. 9, no. 1, 1975, pp. 43–80. https://doi.org/10.1016/0020-0255(75)90017-1.
Mammadov N. Y.. “Ways to save thermal energy in intelligent buildings” Nova Tema, vol. 1, 2011.
Mileikovskyi V., Klymenko H. “Analytical Researches of the Energy Efficiency of Natural Ventilation” Ventyliatsiia, osvitlennia ta teplohazopostachannia, vol. 20, 2016, pp. 39–45. http://vothp.knuba.edu.ua/article/view/168453
Petrash V., et al. “Integration of Ground and Ventilation Air Energy for Heating Buildings.” Budownictwo O Zoptymalizowanym Potencjale Energetycznym, vol. 10, no. 1/2021, 2021, pp. 7–17. https://doi.org/10.17512/bozpe.2021.1.01.
Mammadov N.Y. “The use of modern information technologies in predicting the air flow for the premises of a building.” News of higher educational institutions and energy associations of the CIS “Energetika”, vol. 3, 2008, pp. 72-77.
“Fossil Fuels Will Still Dominate Energy in 20 Years Despite Green Power Rising.” World Economic Forum, www.weforum.org/agenda/2017/10/fossil-fuels-will-dominate-energy-in-2040.
“New Report: District Energy Can Decarbonize the EU Heating and Cooling Sector.” District Energy Can Help Decarbonize EU. See How... | Danfoss, www.danfoss.com/en/about-danfoss/news/cf/new-report-district-energy-can-decarbonize-the-eu-heating-and-cooling-sector.
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2023 А. Ф. Гасімов, Н. Я. Мамедов, С. М. Акбарова, Г. Г. Фейзієва
Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.
Автори залишають за собою право на авторство своєї роботи та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons Attribution License, котра дозволяє іншим особам вільно розповсюджувати опубліковану роботу з обов'язковим посиланням на авторів оригінальної роботи та першу публікацію роботи у цьому журналі.
Автори мають право укладати самостійні додаткові угоди щодо неексклюзивного розповсюдження роботи у тому вигляді, в якому вона була опублікована цим журналом (наприклад, розміщувати роботу в електронному сховищі установи або публікувати у складі монографії), за умови збереження посилання на першу публікацію роботи у цьому журналі.
Політика журналу дозволяє і заохочує розміщення авторами в мережі Інтернет (наприклад, у сховищах установ або на особистих веб-сайтах) рукопису роботи, як до подання цього рукопису до редакції, так і під час його редакційного опрацювання, оскільки це сприяє виникненню продуктивної наукової дискусії та позитивно позначається на оперативності та динаміці цитування опублікованої роботи (див. The Effect of Open Access).